Invariant Trace-fields and Quaternion Algebras of Polyhedral Groups
نویسنده
چکیده
Let P be a polyhedron in H$ of finite volume such that the group Γ(P) generated by reflections in the faces of P is a discrete subgroup of IsomH$. Let Γ+(P) denote the subgroup of index 2 consisting entirely of orientation-preserving isometries so that Γ+(P) is a Kleinian group of finite covolume. Γ+(P) is called a polyhedral group. As discussed in [12] and [13] for example (see §2 below), associated to a Kleinian group Γ of finite covolume is a pair (AΓ,kΓ) which is an invariant of the commensurability class of Γ ; kΓ is a number field called the invariant trace-field, and AΓ is a quaternion algebra over kΓ. It has been of some interest recently (cf. [13, 16]) to identify the invariant trace-field and quaternion algebra associated to a Kleinian group Γ of finite covolume since these are closely related to the geometry and topology of H$}Γ. In this paper we give a method for identifying these in the case of polyhedral groups avoiding trace calculations. This extends the work in [15] and [11] on arithmetic polyhedral groups. In §6 we compute the invariant trace-field and quaternion algebra of a family of polyhedral groups arising from certain triangular prisms, and in §7 we give an application of this calculation to construct closed hyperbolic 3-manifolds with ‘non-integral trace’.
منابع مشابه
Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملCommensurability and virtual fibration for graph manifolds
Two manifolds are commensurable if they have diffeomorphic covers. We would like invariants that distinguish manifolds up to commensurability. A collection of such commensurability invariants is complete if it always distinguishes non-commensurable manifolds. Commensurability invariants of hyperbolic 3-manifolds are discussed in [NRe]. The two main ones are the invariant trace field and the inv...
متن کاملAlgebras and Involutions
• Vectorspaces over division rings • Matrices, opposite rings • Semi-simple modules and rings • Semi-simple algebras • Reduced trace and norm • Other criteria for simplicity • Involutions • Brauer group of a field • Tensor products of fields • Crossed product construction of simple algebras • Cyclic algebra construction of simple algebras • Quaternion algebras • Examples • Unramified extensions...
متن کاملConstructions of Orthonormal Lattices and Quaternion Division Algebras for Totally Real Number Fields
We describe some constructions of orthonormal lattices in totally real subfields of cyclotomic fields, obtained by endowing their ring of integers with a trace form. We also describe constructions of quaternion division algebras over such fields. Orthonormal lattices and quaternion division algebras over totally real fields find use in wireless networks in ultra wideband communication, and we d...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کامل